Industrial Ecology

A Policy Brief By

Jennifer Munholfen, Alesha Myers, Kim Ng
Lily Nierenberg, Chris Nosal, Maryann Nowak
Outline

1. Industrial Ecology
2. 5 Industrial Ecology Components
3. Policy Implications
Industrial Ecology

- An evolving framework that examines the impact of industry and technology on the biophysical environment
- Part of ecological modernization
 - Integration of environmental issues into production and consumption practices
- Seeks to eliminate waste
- Offers government agencies design policies and regulations to improve environmental protection while building business competitiveness
5 Industrial Ecology Components

1. Industrial Metabolism
2. Dematerialization
3. Life Cycle Assessment
4. Eco-Design
5. Eco-Industrial Parks
5 Industrial Ecology Components

1. Industrial Metabolism
2. Dematerialization
3. Life Cycle Assessment
4. Eco-Design
5. Eco-Industrial Parks
Industrial Metabolism

- Study of a material from start to finish
- Compares the economy and industry to a living system
 - Energy input needed to survive
 - Consumed materials converted to useable form
 - Byproducts released
- Focuses on recycling, a closing of cycles
- Analyzes the rate of change of energy and material to different forms
 - Industries imitate natural processes
http://www.unu.edu/unupress/unupbooks/80841e/80841E02.htm#What%20is%20industrial%20metabolism
Interface, A Case Study

- Largest producer of floorcoverings – America’s first free-lay carpet tiles
- Attempt to close the metabolic cycle
 - Considers using natural vs. oil based synthetic raw materials
 - Polylactic acid fibers from corn, potatoes, alternative starch-based agricultural waste product
- Mike Bertolucci, President of Interface Research Corp.
 - “Reduce, reuse, and recycle is the key element to companies that look to become more sustainable. The design of products facilitates dematerialization of the products and ease of their recycling.”
5 Industrial Ecology Components

1. Industrial Metabolism
2. Dematerialization
3. Life Cycle Assessment
4. Eco-Design
5. Eco-Industrial Parks
2 Dematerialization

- The “de-coupling” of economic growth and resource use

- The reduction of:
 - Raw materials (production)
 - Energy and material (use)
 - Waste (disposal)
2 Dematerialization
Implementation in Production & Consumption

1. Resource savings in material extraction
2. Improved eco-design of products
3. Technological innovations in the production process
4. Environmentally conscious consumption patterns
5. Recycling of waste
2 Dematerialization

Revenge Theory

- “Human societies face unintended and often ironic consequences of their own ingenuity.” (Tenner 1996).
- Mechanical
- Chemical
- Medical
- Social
- Financial
2 Dematerialization

Is dematerialization Taking Place?

• Paper Consumption
 – Gain: recycled paper incorporated
 – Loss: paper consumption per capita doubled since 1950

• Automobiles
 – Gain: increased use of plastics and composites
 – Loss: cars have increased in size (SUVs)
Dematerialization

Policy Directives

- Governance must provide:
 - Regulations
 - Mandatory recycling and reuse of primary material inputs
 - Incorporation of waste-minimizing technologies
 - Incentives
 - Cap-and-trade markets for emissions

“Broad-based implementation requires the involvement of the market, and synergism of economic, social, and environmental benefits, should be used as much as possible.” (Bartelmus 1997).
5 Industrial Ecology Components

1. Industrial Metabolism
2. Dematerialization
3. Life Cycle Assessment
4. Eco-Design
5. Eco-Industrial Parks
Life Cycle Assessment

- LCA is a technique for assessing the environmental aspects and potential impacts associated with a product.

- It looks at:
 - Where is it from?
 - Where is it going?
 - What will it be doing?
 - How will it be disposed of?

- Criticism of LCA:
 - Too cumbersome
 - Unrealistic for complex issues
Life Cycle Assessment

• Three basic stages in the structure of LCA
 - Inventory analysis
 - Impact analysis
 - Improvement analysis

• Policy Implications
 • No precise definition of ‘waste’ by a legal entity
<table>
<thead>
<tr>
<th></th>
<th>Industrial Ecology Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Industrial Metabolism</td>
</tr>
<tr>
<td>2</td>
<td>Dematerialization</td>
</tr>
<tr>
<td>3</td>
<td>Life Cycle Assessment</td>
</tr>
<tr>
<td>4</td>
<td>Eco-Design</td>
</tr>
<tr>
<td>5</td>
<td>Eco-Industrial Parks</td>
</tr>
</tbody>
</table>
4 Eco-Design

- Is a way of incorporating sustainable features into every day products
 - Building designs
 - Manufacturing Processes

- Current Eco-Design Examples
 - MBDC
 - AT&T Cell Phones

- Products made from sustainable resources that contain the maximum recyclable content and recyclability are the future of achieving ecological sustainability
Eco-Design

MBDC Teams up with Ford Model ‘U’ Design

AT&T Cell Phone Recycling

- AT&T Wireless is helping EPA and all Americans reduce the electronic waste stream and protect the environment through cell phone recycling
5 Industrial Ecology Components

1. Industrial Metabolism
2. Dematerialization
3. Life Cycle Assessment
4. Eco-Design
5. Eco-Industrial Parks
Eco-Industrial Parks (EIPs)

“Focus on symbiotic relationships in which companies utilize the waste materials or energy of others.”
-GAIA 2004

What are they?

- Model of contemporary governance: public and private sectors and the community

- Vision of sustainable community development: “closed loop”
Eco-Industrial Parks (EIPs)

Where are they?

- United States, Europe, Asia, Africa, and Australia
 - The Green Institute, Minneapolis, Minnesota
 - Green jobs for low-income residents
 - Ecological design
 - Waste and material reuse, energy conservation
 - PEEC
Eco-Industrial Parks (EIPs)

Where are they?

• Kalundborg, Denmark
 – Industrial Partners, exchanging energy and material flows to recycle & reuse waste materials:
 • Assnaes Power Station, Statoil oil, Gyproc, Novo Nordisk, the City of Kalundborg
 • Original motivation: reduce costs by seeking income-producing uses for ‘waste’ products
 – But … transactions were generating environmental benefits in addition to economic benefits
Kalundborg, Denmark

Kalundborg Industrial Symbiosis - 1995

Drawn by D. B. Holmes based on information from various sources, including L.K. Evans, N. Gertler, and Y. Christensen

Indigo Development, 2003
Policy Implications

• Current lack of presence in environmental policy arena
• Proactive → Japan, EU
• Reactive → US
• Scientific uncertainty
 – Limitations and range of applicability of Industrial Ecology
Policy Implications

The State

- US Government as actor
 - Environmental regulator
 - Primary consumer (i.e. purchaser of goods)
 - Secondary consumer (i.e. modifies market demands via policy instruments)

- US EPA
 - Forefront of research and development program
Policy Implications

• Important question = Time Frame

• Role of government is to encourage leaders in industry

• Incentives
 − Tax incentives favor eco-unfriendly use of virgin materials
 − The final say ultimately rests in the hands of a select few